Simulating Replica Exchange: Markov State Models, Proposal Schemes, and the Infinite Swapping Limit.
نویسندگان
چکیده
Replica exchange molecular dynamics is a multicanonical simulation technique commonly used to enhance the sampling of solvated biomolecules on rugged free energy landscapes. While replica exchange is relatively easy to implement, there are many unanswered questions about how to use this technique most efficiently, especially because it is frequently the case in practice that replica exchange simulations are not fully converged. A replica exchange cycle consists of a series of molecular dynamics steps of a set of replicas moving under different Hamiltonians or at different thermodynamic states followed by one or more replica exchange attempts to swap replicas among the different states. How the replica exchange cycle is constructed affects how rapidly the system equilibrates. We have constructed a Markov state model of replica exchange (MSMRE) using long molecular dynamics simulations of a host-guest binding system as an example, in order to study how different implementations of the replica exchange cycle can affect the sampling efficiency. We analyze how the number of replica exchange attempts per cycle, the number of MD steps per cycle, and the interaction between the two parameters affects the largest implied time scale of the MSMRE simulation. The infinite swapping limit is an important concept in replica exchange. We show how to estimate the infinite swapping limit from the diagonal elements of the exchange transition matrix constructed from MSMRE "simulations of simulations" as well as from relatively short runs of the actual replica exchange simulations.
منابع مشابه
Replica exchange and expanded ensemble simulations as Gibbs sampling: simple improvements for enhanced mixing.
The widespread popularity of replica exchange and expanded ensemble algorithms for simulating complex molecular systems in chemistry and biophysics has generated much interest in discovering new ways to enhance the phase space mixing of these protocols in order to improve sampling of uncorrelated configurations. Here, we demonstrate how both of these classes of algorithms can be considered as s...
متن کاملOn the Infinite Swapping Limit for Parallel Tempering
Parallel tempering, also known as replica exchange sampling, is an important method for simulating complex systems. In this algorithm simulations are conducted in parallel at a series of temperatures, and the key feature of the algorithm is a swap mechanism that exchanges configurations between the parallel simulations at a given rate. The mechanism is designed to allow the low temperature syst...
متن کاملFads Models with Markov Switching Hetroskedasticity: decomposing Tehran Stock Exchange return into Permanent and Transitory Components
Stochastic behavior of stock returns is very important for investors and policy makers in the stock market. In this paper, the stochastic behavior of the return index of Tehran Stock Exchange (TEDPIX) is examined using unobserved component Markov switching model (UC-MS) for the 3/27/2010 until 8/3/2015 period. In this model, stock returns are decomposed into two components; a permanent componen...
متن کاملDesign an Efficient Community-based Message Forwarding Method in Mobile Social Networks
Mobile social networks (MSNs) are a special type of Delay tolerant networks (DTNs) in which mobile devices communicate opportunistically to each other. One of the most challenging issues in Mobile Social Networks (MSNs) is to design an efficient message forwarding scheme that has a high performance in terms of delivery ratio, latency and communication cost. There are two different approaches fo...
متن کاملEVOLUTIONARY MONTE CARLO: APPLICATIONS TO Cp MODEL SAMPLING AND CHANGE POINT PROBLEM
Motivated by the success of genetic algorithms and simulated annealing in hard optimization problems, the authors propose a new Markov chain Monte Carlo (MCMC) algorithm called an evolutionary Monte Carlo algorithm. This algorithm has incorporated several attractive features of genetic algorithms and simulated annealing into the framework of MCMC. It works by simulating a population of Markov c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. B
دوره 120 33 شماره
صفحات -
تاریخ انتشار 2016